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ABSTRACT: The U.S. operational global data assimilation system provides updated analysis and forecast fields every
6 h, which is not frequent enough to handle the rapid error growth associated with hurricanes or other storms. This moti-
vates development of an hourly updating global data assimilation system, but observational data latency can be a barrier.
Two methods are presented to overcome this challenge: “catch-up cycles,” in which a 1-hourly system is reinitialized from
a 6-hourly system that has assimilated high-latency observations; and “overlapping assimilation windows,” in which the sys-
tem is updated hourly with new observations valid in the past 3 h. The performance of these methods is assessed in a near-
operational setup using the Global Forecast System by comparing forecasts with in situ observations. At short forecast
leads, the overlapping windows method performs comparably to the 6-hourly control in a simplified configuration and
outperforms the control in a full-input configuration. In the full-input experiment, the catch-up cycle method performs sim-
ilarly to the 6-hourly control; reinitializing from the 6-hourly control does not appear to provide a significant benefit.
Results suggest that the overlapping windows method performs well in part because of the hourly update cadence,
but also because hourly cycling systems can make better use of available observations. The impact of the hourly
update relative to the 6-hourly update is most significant during the first forecast day, while impacts on longer-range
forecasts were found to be mixed and mostly insignificant. Further effort toward an operational global hourly updat-
ing system should be pursued.
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1. Introduction

Currently, many global operational systems assimilate
observations two to four times per day, including the National
Oceanic and Atmospheric Administration (NOAA) Global
Forecast System (GFS; https://www.weather.gov/media/notification/
pdf2/scn21-20_gfsv16.0_aac.pdf). In contrast, higher-resolution
regional systems such as the High-Resolution Rapid Refresh
system (HRRR; Alexander et al. 2020; Smith et al. 2008)
assimilate observations hourly, or even more frequently for
convective-scale models. Currently in the United States, the
Rapid Refresh (RAP; Benjamin et al. 2016) takes 6-hourly
fields from the GFS as lateral boundary conditions, assimilates
observations, and provides hourly fields in real-time that can
be used as boundary conditions to the HRRR. In contrast, if
the global system assimilated observations hourly and pro-
vided real-time hourly analysis fields, these fields could be
used as lateral boundary conditions for the HRRR and other
high-resolution regional models.

Observations with high temporal frequency are also becoming
more common (e.g., geostationary satellite observations from
GOES-16 and Himawari-8/9 are available every 10–15 min),
but it is likely that they are not being used as effectively as
possible in a 6-hourly updating system. For example, clear-sky

geostationary radiances have a small impact on global forecast
skill relative to radiances from polar orbiting satellites (Cardinali
2009). These high-frequency observations from geostationary
satellites could conceivably be used more effectively in an hourly
system: in particular, Kim and Kim (2019) found that shorter
forecast lengths led to a greater impact of observations on fore-
cast skill in a system with a hybrid ensemble/static background
covariance. Global systems are also continually increasing in
spatial resolution, to the point that they may be able to resolve
convective systems in the near future. Accurate initialization of
convective systems within a 6-hourly assimilation window would
require development of new assimilation methods that can prop-
erly account for highly nonlinear, rapidly growing error in con-
vective systems. Alternatively, an assimilation system with a
shorter cadence could use existing methods because the error
growth within a shorter assimilation window (of an hour or less)
is more linear than in a longer window (e.g., Bocquet et al. 2010;
Ruiz et al. 2021), though this would clearly not mitigate all non-
Gaussianity (e.g., in bounded, moisture-related variables). In
addition, current assimilation systems often struggle to accu-
rately constrain the position of hurricanes, which can signifi-
cantly degrade the forecast (Chen and Snyder 2007; Lu et al.
2017). The current operational Hurricane Weather Research
and Forecasting (HWRF) Model uses “vortex relocation” to
adjust the hurricane position in the background field prior to
assimilating observations (e.g., Liu et al. 2006). However,Corresponding author: Laura Slivinski, laura.slivinski@noaa.gov
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hurricane positions may also be better-estimated by more fre-
quent assimilation, reducing non-Gaussian displacement errors
since there is less time for the hurricane in the background field
to drift away from the observations between analysis times. It is
likely, then, that an hourly global assimilation system would not
only provide more accurate lateral boundary conditions for a
regional model, but could also be implemented in such a way
that it would more broadly improve upon a 6-hourly global
system.

There are several ways one could envision implementing
hourly data assimilation. The simplest method would be iden-
tical to the 6-hourly system but with 1-h-long assimilation win-
dows, symmetric about the nominal analysis time. The main
challenge of this method is data latency: observations may not
be available for assimilation until more than an hour after the
observation is valid. This latency can be due to, for instance,
data communication delays, preprocessing, and quality con-
trol (e.g., Lin et al. 2017). Thus, a symmetric hourly system
that is run at, say, 30 min past the hour every hour would only
be able to assimilate observations that are available within
minutes after they are taken.

One method to overcome the data latency challenge is
“catch-up cycles” in which the symmetric hourly system
described above is run, but is reinitialized every 6–12 h from a
separate global system that has a longer data receipt cutoff
time, such as the current NOAA Global Data Assimilation
System (GDAS) with a nearly 6-h data receipt cutoff time.
This system provides 6-hourly fields that have assimilated
observations with 3–9-h latency, so that the 1-hourly system is
reinitialized from a system that has seen more high-latency
observations. A version of catch-up cycling is currently used
in the regional RAP system (Benjamin et al. 2016), not only
to include information from latent observations but also
because the global model can better represent long waves
than the regional model.

However, this implementation of catch-up cycles has draw-
backs. First, it requires two separate global assimilation sys-
tems (one 6-hourly and one 1-hourly), though this could be
easier to maintain than one global system and two regional
systems (as in the RAP/HRRR configuration.) Second, it is
unsatisfying to have a partially cycled system, in which infor-
mation potentially gained from hourly updates is lost every
6 h. Third, this method does not entirely avoid the issue of data
latency, since the hourly cycles run between re-initialization
cycles will still not see higher-latency observations, potentially
resulting in system performance that depends on the time of
day. Finally, Poterjoy et al. (2021) point out that partial
cycling methods can obscure systematic errors in the model,
observations, or assimilation techniques, which could hinder
future developments and improvements (e.g., Wong et al.
2020).

Another method to overcome the challenge of data latency
is so-called continuous data assimilation. This is currently
implemented operationally at the European Centre for
Medium-Range Weather Forecasts using outer-loops in a
4DVar system (Lean et al. 2021), but forecasts and analyses
are not generated at an hourly cadence. More generally,
many global data assimilation systems run (at least) two

analysis updates every cycle; one with an earlier data receipt
cutoff time, for real-time forecasts, and one with a later data
receipt cutoff time, for more accurate initialization of the next
assimilation cycle (e.g., Haseler 2004; Kleist et al. 2009). The
Naval Research Laboratory addressed the issue of data
latency in their 3DVar ocean data assimilation system by
assimilating all data received since the previous analysis time
using First Guess at Appropriate Time (FGAT) (Cummings
and Smedstad 2013). Along similar lines, Payne (2017) pre-
sented the idea of overlapping assimilation windows in a
4DVar system, in which assimilation updates are performed
hourly but assimilate observations in backward-looking 3-h
windows. Previous work (Fisher et al. 2011; Trémolet 2006)
has also discussed overlapping assimilation windows using
4DVar, but not with the goal of producing real-time hourly
analyses. To date, the feasibility of the overlapping windows
method for hourly data assimilation has not been assessed in
a near-operational setup.

To this end, we test the effectiveness of hourly data assimi-
lation using overlapping windows as well as catch-up cycles in
the GFS, assimilating observations with actual data latency.
The present work is intended to provide a description of the
overlapping windows method as well as initial promising
results that motivate future work. Section 2 describes the
methods and experiment setup; section 3 presents results
from three experiments comparing 6-hourly assimilation with
overlapping windows and catch-up cycles; section 4 provides a
preliminary investigation into the causes of the improvements
seen with overlapping windows; and section 5 provides con-
clusions and paths forward.

2. Methods

a. Overlapping windows and catch-up cycles

Payne (2017) first introduced an implementation of over-
lapping windows to overcome the challenge of delayed obser-
vations in a rapidly cycling assimilation system. Figure 1
demonstrates the extent of the data latency problem in the
global observing system, and illuminates the difficulty of per-
forming real-time hourly data assimilation updates with non-
overlapping windows: in such a system, the data receipt cutoff
time would necessarily be no later than 1 h after the earliest
possible observation in that window was taken. Figure 1
(right) shows that this cutoff would keep less than 40% of all
observations valid in a single assimilation window. However,
with overlapping windows, observations that have arrived in
the past hour but that are valid in a longer window (say, 3 h)
are assimilated; note that this means that each observation is
assimilated no more than once. In this way, late-arriving
observations can still impact a state estimate hours after they
were measured. Figure 1 (right) shows that more than 95% of
observations would be assimilated in such a system. We note
that the aircraft observation counts in Fig. 1 are lower than
normal due to COVID-19 (James et al. 2020) but are repre-
sentative of the observation network for the experiments
shown here.
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The concept of overlapping windows in the presence of data
latency was demonstrated in (Payne 2017) with a Lorenz-96
system and variational assimilation methods. Results showed
promise, but further work was needed to evaluate this method
in a more operationally relevant system. To that end, the tests
shown in the present paper will use the Global Forecast
Model (GFS), version 15,1 which is based on the Finite Volume
Cubed-Sphere dynamical core (FV3; Lin 2004; Putman and
Lin 2007) with the hybrid-gain local ensemble transform
Kalman filter (LETKF) (Penny 2014). The current NOAA
global operational system uses the hybrid 4DEnVar assimila-
tion method (Kleist and Ide 2015), but results (not shown)
suggest that the hybrid-gain LETKF has comparable perfor-
mance in a 6-hourly system and is computationally less expen-
sive than hybrid 4DEnVar. Future work will investigate the
hybrid 4DEnVar in a 1-hourly system.

Figure 2 (left panel) illustrates how the overlapping win-
dows (OW) technique is implemented in this study. First, sup-
pose initial conditions are available to cold-start the system at
0000 UTC. The forecast model is then run for 5 h with hourly
output, providing first guess fields at 0100, 0200, …, 0500
UTC (purple box). The analysis is then performed, assimilat-
ing observations in a 3.5-h window from 0100 to 0430 UTC
(gray box). The nominal analysis time for this cycle is 0400 UTC;
the hybrid-gain LETKF first calculates the 3DVar update

with FGAT valid at 0400 UTC, and then calculates LETKF
updates at 0100, 0200, 0300, and 0400 UTC. Through the 4D
LETKF covariances, every observation in the window can
generate an increment to each hourly analysis. The 3DVar
and LETKF updates are linearly combined based on a prede-
termined weighting parameter, resulting in hourly analysis
fields from 0100 to 0400 UTC (note the 0100 UTC analysis is
not used in the next cycle). For the second assimilation cycle,
the aforementioned analyses valid at 0200–0400 UTC are
used as the first three background fields; the model is then
run from the 0400 UTC analysis for 2 h to generate a forecast
that provides the last two background fields for the second
cycle (see green box). In the second analysis cycle, observa-
tions valid from 0200 to 0530 UTC are assimilated, but only
those observations that were not assimilated in the previous
cycle are used in this cycle; no observations are assimilated
more than once. The algorithm then repeats (blue box).

In the current 6-hourly operational system, the 4D Incre-
mental Analysis Update (4DIAU) (Lei and Whitaker 2016) is
used to prevent noise from gravity waves dominating the
short-term forecast. Essentially, analysis increments are calcu-
lated throughout the assimilation window; the forecast model
is then rerun for the assimilation window, adding these analy-
sis increments to the model equations as a model forcing. Fig-
ure 3 illustrates how 4DIAU is implemented in a 6-hourly
system with hourly background fields and 3-hourly incre-
ments. This method can be implemented in the context of
overlapping windows (see Fig. 2, right panel), but we will

FIG. 1. (left) Number of observations as a function of latency (in 15-min bins) for different types of observations and
(right) the cumulative distribution function of different types of observations as a function of latency, calculated using
the GDAS observation dumps over the 24-h period of 0000–2300 UTC 22 Mar 2020. Latency is a positive quantity
defined as the difference between the time an observation is received and the time for which it is valid.

1 GFSv15 was operational from June 2019 until March 2021 (https://
www.weather.gov/media/notification/scn19-40gfs_v15_1.pdf).
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demonstrate below that it is unnecessary in an hourly setup
and in fact, results in a loss of information across subsequent
cycles.

The overlapping windows method will also be compared
with a catch-up cycle algorithm inspired by the RAP. Figure 4
provides an overview of how catch-up cycles are implemented
here. Analyses are generated hourly using 1-h symmetric
assimilation windows. Continuously cycling such a system
would only ever assimilate low-latency global observations,
which compose less than 40% of all available observations
(Fig. 1). To address the data latency issue, the catch-up cycle
system is reinitialized every 6 h from a separate global
6-hourly system, which has a later data receipt cutoff time and
therefore sees more high-latency global observations. In real-
time, we anticipate that this system would be run using the
NOAA Global Data Assimilation System (GDAS), which
has a receipt cutoff time of about 3 h past the end of the
assimilation window and lags real-time by approximately
6 h (i.e., the 0600 UTC analysis runs at about 1200 UTC).

Therefore, the catch-up cycle algorithm is designed such that
it would be initialized from the end of a GDAS assimilation
window (say 0900 UTC) with a run time 3 h later (1200 UTC),
and then cycled hourly for 9 h. The first four cycles (blue filled
circles in Fig. 4) are deemed the actual “catch-up” cycles before
running the real-time hourly cycling (unfilled red circles in
Fig. 4) beginning at 1300 until 1800 UTC. Note that the con-
trol experiment used for reinitialization includes 4DIAU, but
the hourly cycling does not.

b. Experiment setup

The hourly observation files in Binary Universal Form for
the Representation of meteorological data (BUFR) used in
this study were originally generated at the National Centers
for Environmental Prediction/Environmental Modeling Cen-
ter (NCEP/EMC) by gathering all available observations at
26 min past the hour except at 0000 and 1200 UTC, when
observations are gathered at 58 min past the hour (consistent
with current operational observation processing practices).

FIG. 3. Diagram of 6-hourly control configuration with 4DIAU and hourly background fields. The purple box dem-
onstrates cycling from a cold start, the green box demonstrates the first full assimilation cycle, and the blue box shows
the second full assimilation cycle. See the text for more details.

FIG. 2. Diagram of (left) overlapping windows without 4DIAU (OW) and (right) overlapping windows with
4DIAU (OW-IAU). The purple box demonstrates cycling from a cold start, the green box demonstrates the first full
assimilation cycle, and the blue box shows the second full assimilation cycle. See the text for more details.
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Two different kinds of aggregated observation files, so-called
“dump” files, were created: the “overlapping-window dumps”
including all of the observations valid from 3 h prior to 30 min
past the hour [23 h, 30 min] and the “symmetric window
dumps” including all observations valid from 30 min prior to
30 min past the hour [230 min, 30 min]. Experiments with
catch-up cycles assimilated these latter symmetric window
dumps (see Table 1). For the overlapping-window dumps,
consecutive BUFR files included overlapping data. To avoid
assimilating observations more than once, the BUFR files
were filtered to remove duplicate observations in the overlap
period from subsequent cycles, using either observation
receipt time information (when available) or a metadata com-
parison of consecutive files.

The overlapping windows method is tested in a hierarchy of
retrospective experiments spanning four weeks in March–
April 2020, and will be compared with the catch-up cycle
method in the full-input experiment; see Table 1 for an over-
view. Both methods are studied using the GFS, version 15.

This version of the GFS uses three stochastic physics modules:
Stochastically Perturbed Parameterization Tendencies (SPPT;
Palmer et al. 2009; Shutts et al. 2011), stochastic humidity
(SHUM; Tompkins and Berner 2008) and Stochastic Kinetic
Energy Backscatter (SKEB; Berner et al. 2009). Each experi-
ment will use a version of the hybrid-gain LETKF with 80
ensemble members at a resolution of C192 (i.e., 192 3 192
cells per face of the cubed sphere grid or approximately
0.58 grid spacing). Adaptive covariance inflation is imple-
mented using both Relaxation to Prior Spread (RTPS;
Whitaker and Hamill 2012) and Relaxation to Prior Perturba-
tions (RTPP; Zhang et al. 2004). Unless otherwise noted, the
RTPS and RTPP inflation parameters are 0.75 and 0.25,
respectively; there is no high-resolution control member; and
results shown use the ensemble mean. Results are shown for
the overlapping windows method with and without 4DIAU.
In each setup described below, the baseline will be a control
experiment that uses 6-hourly non-overlapping assimilation
windows with hourly background forecasts and 4DIAU with

TABLE 1. Summary of experiments shown in section 3.

Expt name
Inflation

(RTPS/RTPP)

3DVar
weight
(%)

Obs types
assimilated

Obs window
(relative to

nominal analysis
time)

Obs receipt cutoff (relative to
nominal analysis time)

NoSat, LETKF control 0.75/0.25 0 All except satellite
radiances

[23 h, 3 h] 2 h 45 min (GFS)

NoSat, LETKF OW 0.75/0.25 0 All except satellite
radiances

[23 h, 30 min] 58 min (0000 and 1200 UTC); 26 min
(all other hours)

NoSat, LETKF
OW-IAU

0.75/0.25 0 All except satellite
radiances

[23 h, 30 min] 58 min (0000 and 1200 UTC); 26 min
(all other hours)

Full-input control 0.75/0.25 25 All [23 h, 3 h] 2 h 45 min (GFS)
Full-input OW 0.9/0.4 15 All [23 h, 30 min] 58 min (0000 and 1200 UTC); 26 min

(all other hours)
Full-input catch-up

cycles (hourly)
0.9/0.4 15 All [230 min, 30 min] 58 min (0000 and 1200 UTC); 26 min

(all other hours)
Full-input catch-up

cycles (control for
reinitialization)

0.75/0.25 25 All [23 h, 3 h] 2 h 45min (GFS)

FIG. 4. Diagram of global hourly catch-up cycles. The red filled triangles denote the 3-hourly fields from a 6-hourly
control experiment, after running 4DIAU for each cycle. The hourly cycling is initialized from the control field at the
end of the 6-hourly assimilation window and then cycled hourly for 9 h (without 4DIAU). The first four hourly assimi-
lation cycles (blue filled circles) would be the catch-up cycles, and the remaining six cycles (unfilled red circles) are the
real-time hourly cycles.
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analysis increments calculated at the beginning, middle, and
end of the window (Fig. 3). It will assimilate observations
from the real-time GFS observation sets that are used in oper-
ations every 6 h. Note the GFS data receipt cutoff is about
15 min before the end of the observation window (2 h 45 min
past the nominal analysis time at the center of the window)
and therefore does not include high-latency data near the end
of the window. This GFS-type control is used to evaluate rela-
tive performance of the hourly cycling because it is closest
(though not identical) to what is currently used for opera-
tional forecasts.

First, overlapping windows will be demonstrated in a simple
configuration that does not assimilate satellite radiances,
using a pure LETKF (implemented by assigning zero weight
to the 3DVar update in the hybrid-gain). In situ (including
aircraft) and satellite wind observations are assimilated. Air-
craft bias correction is not implemented here, to minimize the
number of adaptive algorithms used in initial tests. The con-
trol in this set of experiments will also assimilate only non-
radiance observations without aircraft bias correction using a
pure LETKF.

Results will then be shown in a full-input system using the
hybrid-gain LETKF. This system is allowed to assimilate sat-
ellite radiances, and adaptive aircraft bias correction and radi-
ance bias correction are both active. The thinning of satellite
observations, quality control methods, and bias correction sys-
tems used for online estimation of the bias correction coeffi-
cients in the hourly experiments have not been modified from
the methods used in GFSv15 and in the control experiment.
The static background covariance matrix used in the 3DVar
portion of the algorithm has not been re-derived from the
matrix used in GFSv15. Based on prior results (not shown),
the hybrid-gain weighting parameter in the control experi-
ment was tuned to assign 25% weight to the 3DVar gain.
Because the static background covariance was not re-derived
for an hourly cycling system, the overlapping windows and
catch-up cycle experiments assigned 15% weight to the
3DVar gain; results with several weighting parameters rang-
ing from 0% to 25% (not shown) suggest that this decrease
from 25% provides a small but consistent improvement in
background fits to observations.

3. Results

a. NoSat, pure LETKF

To determine how well the overlapping windows method
works relative to the control, we first consider the root-mean-
square (RMS) fit of each experiment’s forecast fields to in situ
observations (including radiosondes, dropsondes, and aircraft
observations) for short forecast durations. Significance is evalu-
ated using a Student’s t test with inflation to account for tempo-
ral autocorrelations (Geer 2016). For a consistent comparison,
the analysis fields from which the forecasts are initialized must
have seen observations with (nearly) the same receipt cutoff
time. For example, when comparing with observations in the
1200 UTC window (valid from 0900 to 1500 UTC), the control
fields will be forecasts initialized from IAU-forced fields at 0900

UTC, which will have seen observations up to 0845 UTC (using
the GFS data receipt cutoff; Fig. 3). The overlapping windows
fields will be forecasts initialized from analyses at 0800 UTC,
which will have seen observations valid up to 0826 UTC (using
the overlapping windows data receipt cutoff). The first forecast
hour (0800–0900 UTC) will be either a free forecast or forced
by the IAU, depending on whether 4DIAU is used (Fig. 2).
Thus, the overlapping windows forecasts will be initialized
from analyses that have seen slightly fewer observations (a
difference of ∼15 min) than the control analysis and will be
slightly longer forecasts (by ∼1 h) than the forecasts from the
control experiment. However, note that these are both the
cycles that would be available to a forecaster at a given time.
For instance, at 0900 UTC, the forecaster would have access
to the 0800 UTC hourly update cycle, and the best available
GFS analysis would be from the end of the 0600 UTC cycle
(valid at 0900).

Figure 5 shows that the overlapping windows system, with
and without 4DIAU, is comparable to the control system in
the NoSat setup. Overlapping windows with 4DIAU (OW-
IAU) has slightly but consistently larger RMS errors than the
control when compared to wind and temperature observations
at all levels. Conversely, overlapping windows without 4DIAU
(OW) consistently, and often significantly, has smaller RMS
errors relative to wind observations than the control. Relative
to temperature and humidity observations, however, OW has
slightly larger errors than the control. Overall, results in this
simplified setup are promising. In the following section, the
method will be examined in a more complex system.

First, however, we further investigate the differences in the
overlapping windows method with and without 4DIAU. In
the 6-hourly system, the 4DIAU is used to reduce gravity
wave noise and prevent it from dominating in short-term fore-
casts. To assess the presence of imbalance, we examine 1-h
global absolute surface pressure tendencies (not shown) which
can act as a rough estimate for gravity wave noise (e.g., He et al.
2020; Lei and Whitaker 2016). In this metric, OW has about
20% higher noise than OW-IAU (with an absolute average
tendency of about 0.140 Pa s21) and about 35% higher noise
than the control (with an absolute average tendency of about
0.125 Pa s21) in the first 5–6 h of the forecast, but these differ-
ences decrease with longer forecast lengths (see section 3b.2).
This suggests that gravity wave noise exists in the background
fields of the hourly assimilation system, but does not domi-
nate the short-term forecasts. In addition, removing the
4DIAU from the overlapping windows experiment does not
degrade the performance, and seems to reduce RMS errors
for wind forecasts (Fig. 5). The lack of degradation may be
because the hourly increments in the overlapping windows
method are smaller than those in the 6-hourly assimilation
system (since fewer observations are assimilated each cycle
and error growth between analysis times is likely more lin-
ear), and therefore do not initiate substantial gravity waves in
the analysis updates.

Though 4DIAU is not needed to prevent gravity wave
noise from dominating the forecasts in the hourly system
(e.g., Fig. 5), it does contribute to increasing ensemble spread.
Consequently, removing the IAU in the overlapping windows
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experiment (and necessarily using analyses as background
fields in subsequent cycles; Fig. 2) decreases the ensemble
spread of surface pressure by more than 50%, as shown for a
representative date in Fig. 6 (cf. center and right panels). The
OW ensemble spread is nearly 40% smaller than the control
ensemble spread (cf. left and right panels). However, the spa-
tial features are similar across all three experiments. In later
experiments, we increase the inflation parameters in the OW
experiments to compensate for removing the IAU while
keeping the OW ensemble spread similar to the control
ensemble spread (which has been previously tuned to mini-
mize background errors).

Despite slightly larger gravity wave noise and smaller
ensemble spread, OW consistently outperforms OW-IAU in
wind and temperature at all levels because of the incremental
nature of the 4DIAU (see appendix). In other words, since

the IAU forcing is added incrementally, only the fields at the
end of the window have been fully informed by all of the
observations (contrast Fig. 3 and right panel of Fig. 2). In
OW-IAU, the earlier fields (that have only partially been
informed by the observations) are suboptimal estimates but
are still used as background fields for the next cycle. This
effect likely compounds over many cycles, leading to an over-
all degradation in performance as well as larger ensemble
spread which also indicates that the analyses are less con-
strained by observations (e.g., Fig. 6). Conversely, in OW, the
background fields mostly consist of analyses that have each
been informed by all observations (see appendix for more
details). Note that this effect is specific to the overlapping
windows method: in the control non-overlapping method with
4DIAU, the full IAU forcing has been included by the begin-
ning of the next assimilation cycle (Fig. 3), guaranteeing that

FIG. 5. Vertical profiles of short forecast RMS fits to global in situ observations of (left) vector wind (m s21),
(center) temperature (K), and (right) relative humidity (%) for the control (black), OW (blue), and OW-IAU (red)
experiments in the simple NoSat, LETKF setup, averaged over the time period 1800 UTC 13 Mar–1800 UTC 13 Apr
2020. Yellow shading illustrates where the control and OW experiments differ significantly at the 95% level.

FIG. 6. Ensemble spread of 6-h background surface pressure (hPa) for the (left) control, (center) OW-IAU, and (right) OW at 0000 UTC
5 Apr 2020. Global average values are given in the bottom left of each panel.
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each of the background fields for the next cycle will include
all available information from the current observations.

b. Full-input, hybrid-gain LETKF

The overlapping windows method is next evaluated in a
more realistic setup and compared with the 6-hourly control as
well as with catch-up cycles. Here, all available observations
are assimilated, including radiances, and time-varying, adap-
tive bias corrections for radiances and aircraft are used (Zhu
et al. 2014, 2015). The assimilation method is the hybrid-gain
LETKF, which has the benefit of incorporating both an
ensemble and a static background covariance, so that the
effects of overlapping windows on these aspects can be
investigated.

Based on results in section 3a, we increase the inflation
parameters in OW and the hourly cycles within the catch-up
cycle method to 0.9 and 0.4 for RTPS and RTPP, respectively.
Note that the control used to reinitialize the catch-up cycles
still uses 0.75 and 0.25 for RTPS and RTPP (see Table 1). As
discussed earlier, the hybrid-gain parameter in the control
experiment assigns 25% weight to the 3DVar gain, while the
OW experiment assigns 15% weight to the 3DVar gain. On
the basis of the results in the previous section, OW-IAU is
not investigated in the full-input setup here.

1) OVERLAPPING WINDOWS AND CATCH-UP CYCLES

In Fig. 7, short forecasts initialized from the full-input,
hybrid-gain OW, catch-up cycles, and control analyses are
compared to in situ observations of wind, temperature, and
relative humidity. Similar to the results in the NoSat, pure

LETKF experiment, the wind forecasts from OW significantly
outperform those from the control method at most levels
(Fig. 7, left). In contrast to the NoSat, LETKF setup, OW has
smaller temperature errors than the control at most levels
(Fig. 7, center). The control experiment still has slightly
smaller relative humidity errors than OW (Fig. 7, right);
exploration of this is left for future work, but may be due to
insufficient parameter tuning. The largest gain in performance
is in the upper-tropospheric winds, consistent with previous
findings using the regional hourly updated RAP system
(Benjamin et al. 2016); this may be associated with the impact
of aircraft observations (James and Benjamin 2017).

Despite increasing the inflation parameters, the ensemble
spread of 6-h background surface pressure using OW is still
about 25% smaller than the control ensemble spread (not
shown). Modifying these parameters further could improve
overall performance.

In this full-input setup, OW and the control are also
compared with results from catch-up cycles (orange curves in
Fig. 7). In general, the observation fit of the catch-up cycle
backgrounds are very similar to those of the control. OW out-
performs catch-up cycles in wind and temperature at nearly
all levels. These differences are also significant at nearly all
levels (not shown).

The behavior of the catch-up cycles is investigated in more
detail in Fig. 8, which shows the 1h background fit to wind
observations globally at all levels for catch-up cycles and OW,
as well as the difference between the two. Note that the
results in this figure are averaged over a shorter time period
than earlier figures, but previous work (not shown) suggests
that this does not impact the results. For OW, these are the

FIG. 7. Vertical profiles of short forecast RMS fits to global in situ observations of (left) vector wind, (middle) tem-
perature, and (right) relative humidity for the control (black), OW (blue), and catch-up cycle (orange) experiments in
the full-input hybrid-gain LETKF configuration, averaged over the time period 1800 UTC 13 Mar–1800 UTC 13 Apr
2020. Yellow shading demonstrates where the control and OW experiments differ significantly at the 95% level.
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backgrounds denoted by “fg4” (black open circles) in Fig. 2
(left). Here, the observations used for comparison are at
hourly frequency ignoring latency: these observation sets were
produced by separating the 6-hourly GFS dumps into hourly
dumps, regardless of the observation’s time of arrival. The
RMS differences of the first three catch-up cycles after reiniti-
alizing from the control (blue filled circles in Fig. 4) are shown
in gray in Fig. 8, and the remaining cycles are shown in orange.
The similarity between the orange and gray curves illustrates
that reinitializing the catch-up cycles from the control provides
negligible performance improvement, unlike results seen using
the regional RAP model. This is likely because the main pur-
pose of re-initialization in the RAP is to better represent the
large-scale features from the global model that assimilating
the regional observations alone cannot (e.g., Schwartz et al.
2020, 2021, 2022). In contrast, the purpose of re-initialization
in the global catch-up cycles studied here is to include informa-
tion from high-latency observations that would be assimilated
in the control but not in a symmetric, non-overlapping hourly
assimilation system. However, the control that we used to rein-
itialize the catch-up cycles assimilated the GFS observations
with a receipt cutoff time of 2h, 45min after the nominal analy-
sis time (i.e., the receipt cutoff time is nearly equal to the end
of the valid observation window, rather than 3 h after the end
of the window.) Thus, only low-latency observations are assim-
ilated at the end of the control window. McNally (2019) sug-
gests that the observations at the end of the window are the
most important to forecast skill; we are therefore initializing
the catch-up cycles from a suboptimal control experiment. Ini-
tializing the catch-up cycles from a control with a later receipt
cutoff time (such as the GDAS observations with a cutoff of
nearly 6 h after the nominal analysis time) could improve the
performance of the “early” catch-up cycles, though results in
section 4 (below) suggest that the later receipt cutoff time pro-
vides only a small improvement in the control performance.

The difference between the performance of real-time
catch-up cycles and OW is also shown as the black curve in

Fig. 8. Catch-up cycles consistently have larger errors than
OW, except at 0100 UTC, 1300 UTC, and 2000 UTC. We
hypothesize that these differences are mainly attributable to
the additional (high-latency) observations that OW assimi-
lates. The differences between catch-up cycles and OW at
0100 and 1300 UTCmay be smaller because these are 1h fore-
casts from analyses at 0000 and 1200 UTC, when the receipt
cutoff time is 58 min (instead of 26 min; see Table 1) for both
methods, allowing more time for observations to arrive. Addi-
tionally, most in situ observations (which are generally low-
latency) are available at 0000 and 1200 UTC to be assimilated
by catch-up cycles, thus reducing the benefit of backward-
looking assimilation windows in OW. The small differences at
0700 and 1900–2000 UTC may also be the result of initializing
from the 0600 and 1800 UTC analyses, when more observa-
tions are available.

2) 5-DAY FORECASTS

To investigate the skill of longer forecasts initialized from
overlapping window analyses, vertical profiles of the improve-
ment or degradation, relative to the control, of the RMS dif-
ference between in situ observations and OW forecasts of
full-field wind, temperature, and specific humidity out to
5 days are examined (Fig. 9). These are deterministic forecasts
at a resolution of C384 (approximately 0.258), initialized from
the downscaled C192 ensemble mean analysis. Due to compu-
tational constraints, free forecasts were initialized once per
day (at 0300 UTC for the control and 0200 UTC for OW). As
in Figs. 5 and 7, the control and OW forecasts are each initial-
ized from analyses that have seen approximately the same
observations.

Benefits of hourly assimilation over the 6-hourly control
are seen in the first 6–12 h of the forecast, as illustrated by the
blue shading in wind and temperature. These benefits largely
disappear at longer leads, when results are more mixed. Stip-
pling on Fig. 9 denotes areas of significance at the 95% level

FIG. 8. RMS differences (RMSDs) between 1-h forecast fields and hourly in situ observations
of wind averaged globally across all levels, as a function of time of day (left-hand axis). Results
are averaged over 1600 UTC 13 Mar–1800 UTC 1 Apr 2020. The gray curve shows RMSDs of
forecasts initialized from the “early” catch-up cycle analyses (blue filled circles in Fig. 4), and the
orange curve shows RMSDs for forecasts initialized from real-time catch-up cycle analyses (red
open circles in Fig. 4.) The blue curve shows the OW performance. The black curve (right-hand
axis) shows the difference between the real-time catch-up cycle performance and the OW perfor-
mance. The dotted red line emphasizes where this difference is zero (right-hand axis).
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using Student’s t test with inflation as described in (Geer
2016; Wilks 2011). Specifically, the statistical confidence inter-
val is inflated with a factor determined by modeling the auto-
correlation with a second-order autoregression model; see
appendix C of (Geer 2016). While many of the short-term
improvements in wind and temperature are statistically signifi-
cant, there are also areas of significant degradation, particularly
in midlevel temperature at hours 48 and beyond. However,
since these results use only 30 forecasts, the estimate of the
inflation itself is prone to sampling error (Geer 2016); future
studies of forecast skill using this method will require longer
experiment periods than the one month shown here. Regard-
less, given that the OW method has had limited parameter tun-
ing relative to the control method, these results are promising,
as the hourly assimilation does not consistently worsen long
forecast performance. We anticipate that additional tuning to
the OWmethod could improve results further.

Figure 10a illustrates the gravity wave noise (as measured
by global absolute surface pressure tendencies, first discussed
in section 3a) that results from removing the 4DIAU in over-
lapping windows relative to the control experiment, as a

function of forecast lead time. While OW has an increased
surface pressure tendency of about 0.01 Pa s21 (less than 10%
of the control) in the first 12–15 h, this initial growth dissipates
over longer forecast leads. Figure 10b shows the time series of
the surface pressure tendency in the first three forecast hours
for each experiment over the full month. The tendency of the
OW experiment is larger than that of the control, but does
not consistently increase in time, suggesting that the noise
does not build up in a cycling system. These results further
support the argument that the 4DIAU may not be necessary
in an hourly cycling system with overlapping windows.

4. Causes for improvement in an hourly system

There are likely several factors leading to the significant
improvements of OW over the control and catch-up systems.
First, OW cumulatively assimilates more observations than
the control or catch-up experiments. This is because the
6-hourly systems used in the control and for reinitialization in
catch-up cycles each use the operational GFS observation
dataset, which has a 6-h valid observation window defined as

FIG. 9. Contour plot of global relative differences between the long forecast RMSDs of OW and of the control, relative to in situ observa-
tions, as a function of forecast hour and averaged over the period 0600 UTC 14 Mar 2020–0600 UTC 12 Apr, for (left) vector wind, (center)
temperature, and (right) specific humidity. Blue colors denote that OW has smaller RMSDs than the control, and red colors denote that the
control has smaller RMSDs than OW. Stippling denotes where the control and OW experiments differ significantly at the 95% level.
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[23 h, 3 h] symmetrically centered around the nominal analy-
sis time and includes observations with receipt times of no
later than approximately 2 h 45 min past the nominal analysis
time. With this receipt cutoff time, high-latency observations
at the end of the 6h window will not be assimilated into the
6-hourly system, but OW would assimilate those observations
in the subsequent cycles.

The second factor is simply the hourly frequency of updat-
ing, which leads to shorter (and possibly more accurate) fore-
casts in the background fields. Updating the background

forecast hourly instead of every 6 h should result in a reduc-
tion of the detrimental effects of nonlinearity, both in the evo-
lution of background-error covariance and in the linearization
of the observation operator (e.g., Bonavita et al. 2018).

To investigate these two factors, a set of additional experi-
ments is performed. Each experiment in this section uses the
same full-input, hybrid-gain LETKF setup as in section 3b,
but with RTPS and RTPP inflation parameters of 0.9 and 0.5,
respectively, and a weighting factor of 20% is assigned to the
3DVar gain (Table 2). These experiments were run for a
period of 9 days (13 March 2020–22 March 2020). The first
experiment, “control_gfs,” uses the 6-hourly system with
4DIAU and assimilates the GFS observations (as in section 3b).
The second experiment, “control_gdas,” uses the same 6-hourly
system but assimilates the operational GDAS dataset, which
has the same 6-hourly observation windows as the GFS but
with a longer receipt cutoff time of 5h 50min past the center of
the window (about 3h later than the GFS cutoff). A brief exam-
ination of the observation files suggests that the GDAS dataset
includes about 15% more observations than the GFS dataset
due to the later receipt cutoff time. Figure 11 (black curve and
gray shading) shows that assimilating the additional observa-
tions from GDAS somewhat improves the 6-h RMS fit to in
situ observations relative to the earlier GFS cutoff (as shown by
the negative values of the difference between the control_gdas
and control_gfs RMSDs).

The next experiments, “hourly_gfs” and “hourly_gdas,”
assimilate the identical GFS or GDAS observations as the
control experiments, but the background fields are updated
each hour using a non-overlapping hourly cycling system
by splitting the GFS or GDAS dumps into 6 subsets. For
example, consider the 0600 UTC GFS dump window with
observations valid from 0300 to 0900 UTC. The hourly_gfs
experiment will assimilate observations from this dump win-
dow that are valid from 0300 to 0430 UTC to generate an
analysis at 0400 UTC. A 1-h forecast is initialized from this
analysis to generate a background field at 0500 UTC. Obser-
vations from the same GFS dump window that are valid from

FIG. 10. Globally averaged 3-h absolute surface pressure ten-
dency for the control experiment (black) and OW (blue) (a) as a
function of forecast lead time, averaged over the 1-month period
14 Mar–13 Apr 2020, and (b) for the first 3 h of the forecast as a
function of date–time for the cycled experiment.

TABLE 2. Summary of experiments shown in section 4.

Expt name
Inflation

(RTPS/ RTPP)
3DVar

weight (%)
Obs types
assimilated

Obs window (relative to nominal
analysis time)

Obs receipt cutoff (relative
to nominal analysis time)

Control_gfs 0.9/0.5 20 All [23 h, 3 h] 2 h 45 min (GFS)
Control_gdas 0.9/0.5 20 All [23 h, 3 h] 5 h 50 min (GDAS)
Hourly_gfs 0.9/0.5 20 All [290 min, 30 min] for 0400, 1000,

1600, 2000 UTC; [230 min, 0] for
0300, 0900, 1500, 2100 UTC); [230
min, 30 min] for all other times
(see text for details)

2 h 45 min after 0000, 0600,
1200, 1800 UTC (GFS)

Hourly_gdas 0.9/0.5 20 All [290 min, 30 min] for 0400, 1000,
1600, 2000 UTC; [230 min, 0] for
0300, 0900, 1500, 2100 UTC); [230
min, 30 min] for all other times
(see text for details)

5 h 50 min after 0000, 0600,
1200, 1800 UTC (GDAS)

OW 0.9/0.5 20 All [23 h, 30 min] 58 min (0000 and 1200
UTC); 26 min (all other
hours)
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0430 to 0530 UTC are assimilated to generate the analysis at
0500 UTC. The cycling continues in this way until 0900 UTC,
which assimilates observations in the 0600 UTC GFS dump
valid from 0830 to 0900 UTC to generate the analysis at
0900 UTC. The hourly_gdas experiment proceeds in the
same way, but assimilates observations from the GDAS
dumps instead of the GFS dumps. These experiments were
performed in this way to avoid any further processing of the
GFS and GDAS dumps that could lead to slight differences
in the observations assimilated.

The difference between RMSDs of the hourly_gfs and
hourly_gdas experiments is shown in the pink curve in Fig. 11
(yellow shading emphasizes significant differences). Note that
assimilating the larger GDAS observation dataset in the
hourly system generally has a much greater effect than in the
control system, particularly in mid- to upper-tropospheric
winds and temperature at all levels (Fig. 11, compare pink
and black curves).

By comparing hourly_gdas with control_gdas, the impact
of updating with an hourly frequency can be isolated from
the effect of assimilating extra observations. Figure 11
(green curve) shows that hourly_gdas outperforms con-
trol_gdas in wind and temperature at nearly all levels. This
seems to suggest that the hourly updating frequency alone
would provide significant improvement over a 6-hourly
system; however, the hourly system using catch-up cycles

does not significantly improve over the 6-hourly control
(Fig. 7). Instead, a comparison between the pink and black
curves in Fig. 11 suggests that an hourly cycling system can
better handle late-arriving observations than a 6-hourly
system.

To determine how much improvement would be possible in
an hourly system with reduced data latency, hourly_gdas
results are compared with those from OW (Fig. 12). Here,
both experiments update with an hourly frequency, but hour-
ly_gdas essentially assimilates observations without data
latency (recall that the GDAS data cutoff is 5 h 50 min after
the nominal analysis time), while OW assimilates real-latency
observations. Additionally, note that the end of the observa-
tion window for OW is about 30 min earlier than the end of
the observation window used for hourly_gdas (e.g., the 0000
UTC GDAS observation window would include observa-
tions valid until 0300 UTC, while the comparable OW
observation window would only include observations valid
until 0230 UTC). Comparisons between these two experi-
ments (Fig. 12) therefore provide an upper-bound on the
improvement that could be gained in an hourly system from
reducing latency of observations. Results show that this
potential improvement is smaller than the improvement
gained by increasing the frequency of updates from 6-hourly
to 1-hourly, suggesting that the overlapping-windows tech-
nique is largely successful in overcoming the issue of data

FIG. 11. Vertical profiles of differences of short forecast RMSDs with respect to global in situ
observations of (left) vector wind (m s21) and (right) temperature (K) for control_gdas minus
control_gfs (black), hourly_gdas minus hourly_gfs (purple), and hourly_gdas minus control_gdas
(green) in the full-input hybrid-gain LETKF setup, averaged over the time period 1200 UTC
13 Mar–1800 UTC 22 Mar 2020. Gray shading denotes where control_gfs and control_gdas differ
significantly at the 95% level, and yellow shading denotes where hourly_gfs and hourly_gdas dif-
fer significantly at the 95% level.
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latency, though there is some room for improvement with
decreased latency.

5. Discussion

A global hourly data assimilation system using an overlap-
ping windows method to overcome the challenge of data
latency was tested in a reduced resolution version of the
NOAA operational forecast system using GFSv15 and a
hybrid-gain 3DVar/LETKF assimilation algorithm. Despite
minimal tuning of assimilation parameters, static background
covariances, and bias correction methods, the overlapping
windows method has comparable performance to a 6-hourly
control system. In fact, the overlapping windows method
improves upon a 6-hourly assimilation system in the context
of short-term (less than 12 h) fits to observations. The improve-
ments are greatest in winds and temperature in the upper tro-
posphere, similar to what was found using the regional hourly
updating RAP system. The benefits largely disappear at longer
forecast leads, when results are more mixed. Longer experi-
ments are needed to robustly estimate significance at those
lead times.

Though the overlapping windows method had a slight
increase in gravity wave noise without the 4DIAU relative to
OW-IAU, this noise did not degrade the performance in
short-term fits to observations, and the effects diminished at
longer forecast leads. That the gravity wave noise did not

degrade performance is likely because the hourly system has
smaller analysis increments than a 6-hourly system, in which
some smoothing (from the 4DIAU or digital filtering) is
required. As shown in section 3a, the 4DIAU cannot be
straightforwardly applied in the overlapping windows frame-
work without a loss of performance. While modifications to the
4DIAU procedure may be possible to minimize this loss of
information, the 4DIAU adds computational burden and does
not appear to be needed in an hourly OW framework.

Catch-up cycles were also investigated, in which an hourly
cycling system is reinitialized from a control system every 6 h.
This method had comparable results to the 6-hourly control,
suggesting that any benefits gained from cycling hourly are
lost when the system does not assimilate high-latency obser-
vations. Results from catch-up cycles also suggest that initial-
izing from a control experiment does not significantly
improve the results, though this may be because the control
experiment assimilated only low-latency observations at the
end of its assimilation windows.

An additional set of experiments suggests that the hourly
frequency of updates provides most of the improvement in
OW over the control system. However, this is not the whole
story, since the catch-up cycle method does not outperform the
6-hourly control. The overlapping windows method likely out-
performs both the control and catch-up cycles due to the inter-
action between additional observations and hourly cycling.
Results comparing the effects of assimilating additional

FIG. 12. Vertical profiles of short forecast comparisons with respect to global in situ observa-
tions of (left) vector wind (left) and (right) temperature for the OW (blue) and hourly_gdas
(purple) experiments in the full-input hybrid-gain LETKF setup, averaged over the time period
1200 UTC 13 Mar–1800 UTC 22 Mar 2020, to demonstrate the effects of data latency in an
hourly system. Yellow shading illustrates where the two experiments differ significantly at the
95% level.
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observations in a 6-hourly system to those in a 1-hourly system
suggest that an hourly cycling system can use higher-latency
observations more effectively than a 6-hourly system by using
data within the first hour that it becomes available. This partic-
ularly motivates future investigations of assimilating more
high-temporal-frequency observations in an hourly system than
are currently assimilated in the global system. Results from
hourly experiments with different data latencies also suggest
that an hourly global system would be beneficial regardless of
whether data latency decreases in the future (with faster data
communication links, for instance.)

This work has focused on the fairest possible comparisons
between a real-time hourly system and the current 6-hourly
GFS configuration, and therefore results are only shown from
forecasts initialized one to four times per day, at nearly the
same time. However, one significant benefit of a real-time
hourly system over a 6-hourly system is that more accurate
analyses will be available in real-time at every hour of the day.
For example, at 1200 UTC, a forecaster would have access to
the 1100 UTC hourly update cycle, which will have assimilated
observations valid until 1130 UTC. In the current 6-hourly sys-
tem, the most recent analysis available would be valid at 0900
UTC (the end of the 0600 UTC GDAS cycle), which would
have assimilated observations valid until 0900 (including late-
arriving observations). Regardless of data latency, the hourly
updating system can provide more up-to-date, and therefore
better-informed, fields than the 6-hourly system at most hours
of the day. This could significantly improve weather situational
awareness with particular impacts in the aviation sector, e.g.,
as described in (Benjamin et al. 2016).

These results suggest that further investigation of upgrading
the GFS to an hourly system would be worthwhile, but they are
also promising for the Rapid Refresh Forecast System (RRFS),
NOAA’s planned next-generation rapidly updated convection-
allowing ensemble forecast system. While hourly updated lateral
boundaries would benefit the limited area modeling approach
(Black et al. 2021), the extension of overlapping windows to the
RRFS data assimilation system may also obviate the longstand-
ing need for complex partial cycling procedures.

Further work is needed to determine how viable overlap-
ping windows would be for the operational GFS. More tuning
of, for instance, the stochastic physics parameters, localization
and inflation, static background error, and bias correction
algorithms could be investigated and potentially provide fur-
ther improvement. In particular, the radiance bias correction
in the OW system may need modification due to the inhomo-
geneity in time of the in situ observations used for anchoring
radiance observations (although there was no suspicious
behavior in the time series of the bias correction coefficients
used in the OW experiments; not shown). Additionally, the
added computational burden of running an hourly global sys-
tem is nontrivial, and would require extra attention to mini-
mizing data transfer bottlenecks.

Future work will address the anticipated benefits of an
operational global hourly assimilation system over a 6-hourly
system in two particular contexts: initialization of regional
model forecasts and hurricane forecasts. Experiments with
regional model forecasts will determine whether a global

hourly system can provide better lateral boundary conditions
to a high-resolution regional model than the current RAP,
and case studies of significant hurricanes using the global OW
system (at higher spatial resolution than implemented here)
will demonstrate impacts of hourly cycling on fast-moving
storms. Finally, the results shown here assimilated only the
observations that are currently assimilated in the global sys-
tem: we hypothesize larger improvements over the control
system when assimilating additional high-frequency observa-
tions in an hourly system.
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APPENDIX

Performance of 4DIAU in Overlapping Windows

To delve into the causes of the differences between OW-
IAU and OW, an experiment was run beginning from identi-
cal initial conditions for two sequential assimilation cycles,
with and without the IAU, using the configuration described
in section 3a (NoSat, pure LETKF). All stochastic forcing
was turned off in this experiment. Background fields were
generated for 0700–1100 UTC 13 March 2020 to span the
first assimilation window (see Fig. A1). Each experiment was
initialized from these (identical) background fields and then
assimilated identical observations (the 3.5-h observation win-
dow from 0700 to 1030 UTC, as described in section 2 and
Table 1), resulting in identical analysis fields at 0800, 0900,
and 1000 UTC. For OW-IAU, the system was then initial-
ized from the background field at 0700 UTC and run with
IAU forcing until 1100 UTC, at which point the IAU forcing
was turned off and the system ran in free-forecast mode for
6 h (through 1700 UTC). For OW, the analyses from 0800 to
1000 UTC were used as background fields for the subse-
quent cycle; the system was then initialized from the analysis
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field at 1000 UTC and ran as a free forecast from 1100 to
1700 UTC. During the second assimilation cycle, each exper-
iment assimilates observations from 0800 to 1130 UTC; gen-
erates analyses at 0900, 1000, and 1100 UTC; and generates
backgrounds at 1200 UTC with or without IAU forcing,
respectively.

To compare OW-IAU with OW hour-by-hour, these fields
were compared with a set of hourly observations with
all latency removed: these observation sets were produced
by separating the 6-hourly GFS dumps into hourly dumps,
regardless of the observation’s time of arrival. These are
therefore not fits to independent observations, since many

FIG. A1. Diagram for the two-cycle experiment comparing OW-IAU with OW.

FIG. A2. Contour plot showing the difference between OW and OW-IAU RMSDs with global in situ observations of (left) vector wind,
(center) temperature, and (right) specific humidity as function of hour in the first cycle of the two-cycle experiment described in the text.
Blue colors denote that OW has smaller RMSDs, and red colors denote that OW-IAU has smaller RMSDs. Note that only even hours are
shown; odd hours did not have enough data to calculate statistics.
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of these observations were assimilated in the first cycle, so
the errors themselves are not as informative as the differ-
ence between the OW-IAU errors and the OW errors;
that difference will be entirely due to the effect of the
IAU. Figure A2 shows the effect of the IAU: filled con-
tours show the difference between the OW-IAU RMS
fit to hourly observations and the OW RMS fit to hourly
observations, for different forecast lead times. Blue colors
signify that OW is closer to the observations than OW-
IAU.

Figure A2 demonstrates that the largest differences between
the OW-IAU and OW fields are at 0800 and 1000 UTC,
when OW-IAU has larger errors than OW. This is because
the OW fields at these times are the original analysis fields,
while the OW-IAU fields are the IAU-forced analysis fields,
which will not have been informed by all of the observations
until the end of the window at 1100 UTC. The errors that
correspond to the free forecasts (1200–1600 UTC) are very
similar between OW-IAU and OW; this is because both
experiments have been informed by all of the observations
by 1200 UTC, and suggests that a free forecast from a raw
analysis is close to a free forecast from an IAU-forced
analysis.

However, the differences at 0800–1000 UTC affect the
second cycle, since these fields are used as the backgrounds
for the second cycle. Figure A3 compares the 1-h forecast
fit with hourly observations at 1200 UTC, initialized from
the first analysis cycle at 1100 UTC. At this point, all of
the 1100 UTC observations have been assimilated in both
experiments, but the OW errors are consistently smaller
than the OW-IAU errors. This effect likely compounds
over many cycles, leading to the differences seen in the pre-
vious section. Note that this effect is specific to the

overlapping windows method: in the control non-overlap-
ping method with 4DIAU, the full IAU forcing has been
included by the beginning of the next assimilation cycle,
guaranteeing that each of the background fields for the
next cycle will include all available information from the
current observations.
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